Does Code Decay? Assessing the Evidence from
!'_ Change Management Data

Presenter: Tao Xia
Sep 21, 2006



i How does code decay?

= If a software system does not change,
does it decay?

= Yes, because the hardware and
software environment surrounding it do
change

= And the requirements of the software
system may change also



i What is code decay?

= Three factors to estimate code decay
» Cost, the resources spend on the change

« Interval, the time requires to complete the
change

= Quality of the changed software



i Cause of code decay

= Inappropriate architecture

= Violations of the original design principles
= Imprecise requirements

= Time pressure

= Inadequate programming tools

= Organizational environment

= Programmer variability

= Inadequate change processes



i Symptoms of code decay

= Excessively complex

= Frequent changes — unstable code
= History of faults

= Widely dispersed changes

= Kludges

= Numerous interfaces (?)



i Risk factors for code decay

= Size of a module

= Age of the code

= Inherent complexity

= Organizational churn

= Ported or reused code

= Requirements load

= Inexperienced developers



i Evidence of code decay (1)

= The span of changes increases over
time.

= Modularity decreases

1088 1988



i Evidence of code decay (2)

= The number of changes to the module,
the dates of these changes, and the
size of changes have clear contribution
to the fault rate

= Model the effort of a change from the
span and size of the changes



i Discussion

= The authors claim: the number of
developers touching a module had no
effect on its fault potential



